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Abstract 

The relationship of equivalence for symmetric color- 
ings vs equivalence for color groups is illustrated for 
the group p4m. The seven subgroups of index 2, the 
31 subgroups of index 4, and the 12 subgroups of 
index 6 are listed. The relationsip of these 50 
subgroups and colorings to the corresponding 20 
color-group types is explained. Each coloring is 
sketched in a figure. 

Introduction 

Much attention has been devoted in recent years to 
color symmetry and the classification of color groups. 
For example, see Senechal (1979), Harker (1981), 
Jarratt & Schwarzenberger (I 980, 198 I), MacDonald 
& Street (1978a, b), Nabonnand & Billiet (1983), and 
Wieting (1982). A recent article by Schwarzenberger 
(1984) surveys the whole field and its history. 
However, the question of equivalence has been a 
point of some controversy. The usual approach is to 
classify color groups using the following definition 
of equivalence: a color group is a pair (G, H) consist- 
ing of a symmetry group or crystallographic group G 
together with a subgroup H of finite index n: if H 
and H'  are two such subgroups then (G, H) and 
( G, H') are said to be equivalent if  there is an affine 
transformation f normalizing G with f H f  -1 = H' [see 
Schwarzenberger (1980), p. 39]. We will say that they 
belong to the same color-group type. 

The author (Roth, 1982), however, has emphasized 
a different point of view, namely that the original 
design or structure and its symmetry group G are 
given and one wishes to classify the symmetric color- 
ings of that structure. Two symmetric colorings of  
a given structure are equivalent if a relabelling of  
the colors transforms the first coloring to the second 
coloring. Two different subgroups will then give 
inequivalent colorings (see Roth, 1982, theorem 1.3). 
Another reference that explores this point of view is 
a recent paper of Senechal (1983). To list the sym- 
metric colorings with n colors for a structure with a 
given symmetry group G one must then list all the 
subgroups of index n. 

We feel that much information is lost if one only 
lists the color-group types and that for many purposes 
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it is important to take into account the different sub- 
groups (and colorings) that correspond to one color- 
group type. This paper is intended as a case study to 
illustrate the situation for p4m with two, four and six 
colors (no such colorings exist for n =3 or 5) by 
listing all subgroups of index 2, 4 and 6 and displaying 
the colorings of one particular design for these cases• 
A comparison is made with the related color groups 
that are classified by the definition of equivalence 
cited above and the various situations that occur are 
analyzed. While p4m is of course just one of the 17 
planar crystallographic groups it will serve as a typical 
example of the various types of anomalies that can 
occur for any symmetry group. For p4m using two, 
four and six colors there are 50 colorings correspond- 
ing to 20 color-group types• 

The theoretical background for this work has been 
developed in detail by the author (Roth, 1982) and 
the notation and approach of that paper are used 
throughout; we quickly summarize it here. Note that 
we compose symmetry operations from left to right 
so that ba means first b then a. The design or structure 
must first be partitioned into 'fundamental regions', 
which form an orbit under the action of G and have 
the property that for any two regions Ai, Aj there is 
a unique symmetry operation g in G such that g maps 
Ai onto Aj. One chooses one of the regions O to be 
the 'starting region'; then each region A is of the form 
Og for a unique g and is labelled by the element g. 
If H is a subgroup of index n in G then one uses 
the right coset decomposition of G: G = Hxl u Hx 2 w 
• .. u Hx,. The regions labelled by the elements of the 
coset Hxi are then colored by the color i for i = 
1, 2 , . . . ,  n. We generally let xl be the identity element 
e of G so that the regions corresponding to the sub- 
group H would be colored by color 1. This gives a 
symmetric coloring of the design; an element g maps 
precisely the set of regions colored i onto the regions 
colored j if Hx~g = Hxj. The correspondence from the 
set of subgroups to the set of colorings will depend 
on the choice of 'starting region' O (which is the 
region labelled by the identity element e); however, 
under any such choice the collection of colorings 
associated with a set of conjugate subgroups remains 
the same. 

There are two ways that the color groups (G, H) 
and (G ,H ' )  could be equivalent: they may be 
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Fig. 1. The fundamental regions are labelled by the elements of 
the group p4m using the generators, which consist of  the transla- 
tions x and y, the rotation a and the reflection b. e denotes the 
identity. The colorings for two and four colors will be illustrated 
using only the lower left 3 by 3 array (Figs. 2-7) while the 
illustrations with six colors will use the 4 by 4 array (Figs. 8, 9). 
k and h are reflections in the axes shown and do not belong to 
the original group G = p4nt  

equivalent under an 'inner' automorphism induced 
by conjugation by an element of the symmetry group 
G itself, in which case H and H '  will necessarily be 
conjugate subgroups; or they may be equivalent 
under an 'outer' automorphism induced by conjugat- 
ing by an element not in G (this is a slight abuse of 
the usual group-theoretical use of the word 'outer 
automorphism' since we will not insist that it not be 
equal to some inner automorphism). In certain cases 
both situations occur simultaneously (see the dis- 
cussion of/'/37 and H38 later). We should note that 
in the important paper of van der Waerden & 
Burckhardt (1961), where the basic approach to color- 
ing used here originated, the color groups (G, H) and 
(G, H') are essentially considered 'equivalent' only 
when inner automorphisms are involved, and this 
more restrictive definition is still used for certain 
applications by some authors [see Litvin, Kotzev & 
Birman (1982), for example]. Now in the case of 
G = p4m, a design having G as symmetry group has 
two sets of inequivalent fourfold centers. A geometric 
transformation normalizing G either leaves these two 
sets invariant (in which case it belongs to G itself) 
or interchanges the two sets: thus G is of index two 
in its normalizer, which also happens to be a group 
of type p4m. It is useful to single out a particular 
element of this larger group, namely the reflection k 
in the diagonal axis bisecting the starting fundamental 
region; see Fig. 1. This element, which together with 
G will generate the normalizer of G, plays a special 
role as will be explained below. 

We have chosen as the design to be colored the 
familiar rectangular grid that divides the plane into 
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Fig. 2. The seven colorings for p4m using two colors. The starting 
region is labelled e and the regions corresponding to the gen- 
erators given in the table are each marked by a diamond here 
and in the other figures. 

an array of squares. The fundamental domains are 
then triangles, each square being divided into eight 
such triangles. See Fig. 1. Note that the basic original 
design that is being colored consists of the larger 
squares formed by the heavier lines, not the collection 
of triangles (nor the finer lines) that are added in 
preparation for the colorings. This design fills the 
plane completely. Other designs could also be used 
for p4m and if they consist of smaller motifs that do 
not fill the plane then the appearance of the colorings 
would be different. If the fundamental domains are 
chosen as large as possible, so as to fill out the plane, 
then they will necessarily be the triangular regions 
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Coloring 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
2O 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

Subgroup 
nm 

(a~ x, y> 
(a2, b, x, y) 
(a, ba, x, ~) 
(a, b, xy, y ) 
(ax, bx, xy, ]¢2) 
(ax, b, xy, y~ 
(a, bx, xy, y ) 
(a 2, x, y) 
(a 2, ba, xy, y2) 
(a 2, bax, xy, y2) 
(a 2, b, xy, y2) 
(a 2, bx, xy, y2) 
(a, xy, y2) 
(ax, xY,2y 
(a ,b ,x  , ) 
(axy, b, x y2) 
(ax, by, x yj) 
(ay, by, x y )  
(ay, bx, x y~! 
(ax, bx, x x], > 2, 
(axy, bxy 
(a, bxy, x: y2;  
(a 2, b, X, '2) 
(a 2, b, x 2, y) 
(a2x, b, x 2, y) 
(a2y, by, x, y2) 
(a2y, b, x, y2) 
(a2x, bx, y, x2> 
(a 2, bx, y, X 2) 
(a 2, by, x, y2) 
(ba, x, y) 
(ba 3, x, y) 
(a2x, b, xy, y2) 
(a2x, bx, xy, y2) 
(a2x, ba, xy, y2) 
(a2x, ba 3, xy, y2) 
<b, x, y> 
(b2a, x, y) 3 
(a ,b ,x ,y  ) 
(a2x, b, x 3, y) 
(a 2, b, x 3, y) 
(a2y, by, x, y3) 
(a2x 2, b, x 3, y) 
(a2y 2, by 2, x, y3) 
(a2y, ba 3, xy, y3) 
(a2x, bax, xy, y3) 
(a2y 2, ba, xy 2, y3) 
"a 2 ba 2 3. , , x y , y ~  
(a 2, ba, xy, y3) 
(a2y, ba, xy 2, y3) 

Table 1. Table of colorings 

Conjugates  
Normal 
Normal 
Normal 
Normal'[ 
NormalJ 
Normal%, 
Normal J 
Normal 
Normal 
Normal 
Normall, 
NormalJ 
Normal~ 
NormalJ 
Conj. to Hl6"~ 
Conj. to Hl5~. 
Conj. to H I s (  
Conj. to H17 j 
Conj. to /-/20" 
Conj. to H19 
Conj. to /-/22 
Conj. to H2, 
Conj. to H24" 
Conj. to /-/23 
Conj. to /-/26 
Conj. to H25 
Conj. to H2s' 
Conj. to /-/27 
Conj. to/-/30 
Conj. to /-/29 
Conj. to 832 
Conj. to H3t } 
Conj. to H34%, 
Conj. to/-/33 J 
Conj. to H36-1. 
Conj. to H35 J 
Conj. to /'/38 } 
Conj. to /'/37 
All six } 
subgroups 
nsg-H44 
are 
conjugate 

All six } 
subgroups 
/-/45-/'/5o 
are 
conjugate 

Color- 
group Subgroup 
type type n /z A Fig. 

CG1 p4 2 2 1 2 
CG2 pmm 2 2 1 2 
CG3 cmm 2 2 1 2 

CG4 p4m 2 1 2 2 

CG5 p4g 2 1 2 2 

CG6 p2 4 4 1 3 
CG7 pmm 4 2 2 3 
CG8 pgg 4 2 2 3 

CG9 cram 4 2 2 3 

CG10 p4 4 2 2 3 

CGl l  p4m 4 1 4 4 

CG12 p4g 4 1 4 5 

CGI3 pmm 4 2 2 5 

CGI4 pmg 4 2 2 6 

CGI5 cm 4 4 1 6 

CG16 cram 4 2 2 7 

CG17 ping 4 2 2 7 

CG18 pm 4 4 1 7 

CG19 pmm 6 2 3 8 

CG20 cmm 6 2 3 8 

that we are using, because the edges of these triangles 
are the axes of  reflections that generate the group; so 
the colorings would appear as in our figures. 
However, for those symmetry groups that are not 
generated by such reflections (such as p4 or p4g) 
there is no such canonical choice for the fundamental 
regions and the appearance of the colorings could 
vary considerably. This does not affect the analysis 
of the colorings that we are giving, except with respect 
to the question of  a certain apparent similarity of  the 
patterns that arises in some cases; for example, see 
colorings 4 and 5 in Fig. 2. This phenomenon was 
perhaps noted first by MacDonald & Street (1976). 
If colors are added to a design one could ignore the 
original design (here the rectangular grid of squares) 

and simply consider the new configuration consisting 
of the pattern of colors that has been laid down on 
the design. It is these 'color patterns' that may then 
appear to be the same or very similar; in the example 
of colorings 4 and 5, they are congruent under a 
symmetry operation that is not in the original group 
(3. Because this similarity depends so much on the 
choice of  the original design and the fundamental 
domains we feel that this aspect should not distract 
one from our emphasis on the basic classification by 
equivalence of  colorings. 

Further study of the apparent 'similarity' of 
inequivalent colorings is important but we feel the 
proper analysis should be done in the framework of 
partial color symmetry (using a larger group contain- 
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Fig. 3. Colorings 8-14. 

ing G) as is formulated in § 4 of the author's 1982 
paper, where they were called 'equivalent color pat- 
terns'. From the discussion in that paper [see dis- 
cussion at top of p. 290 in Roth (1982)], it follows 
that when H is sent to H '  under the automorphism 
induced by the reflection k (that is if H ' =  k-lHk) 
then the color patterns are 'equivalent', being trans- 
formed one to the other under the geometric symmetry 
operation k; for short we will say that the colorings 
are 'k congruent'. In this case, since k normalizes (7, 
the color groups involved are equivalent. Other sym- 
metry operations that normalize G may also have the 
same effect on the color patterns (and in fact in the 
figures illustrated it is often easier to spot a translation 
that effects the transformation); however, theorem 

I l l ]  
I 1 [ ~  iv1] 
M I I  

['LI I 

N 

, / ~  i i i ~'~r'J~r / 

~ ..... 

i:i:i:i:..N.": 

/ \oi iifii  ,4 

17 18 

Fig. 4. Colorings 15-18 corresponding to the color-group type 
CGll .  

4.3 of Roth (1982) shows that if the color patterns 
are 'equivalent' under a symmetry operation that nor- 
malizes G then they are actually k congruent. 
However, it will also be seen that sometimes the color 
patterns are 'equivalent' under a symmetry operation 
that does not normalize G and the color groups might 
not in fact be equivalent. Thus the fact that this 
phenomenon often arises in connection with 
inequivalent colorings belonging to the same color- 
group type should not be used as a justification for 
listing only the color-group types; the classification 
by equivalence of colorings that we are stressing in 
this paper is also important. 

In generating p4m, we use x and y as the generating 
translations, horizontal and vertical, respectively; a 
is a rotation 90 ° counterclockwise around the center 
of a fixed square and b is a reflection in the horizontal 
axis through that center. See Fig. 1. Then p4m is 
generated by these four elements; i.e. p4m= 
(a, b, x, y). The colorings are numbered m = 1 to 50 
and for each m the coloring is determined by the 
corresponding subgroup H,,. 

Senechal (1979) has described a program for find- 
ing the subgroups of the plane crystallographic 
groups [see also Senechal (1980) for higher 
dimensions; and see Sayari, Billiet & Zarrouk (1978) 
for a listing of the subgroups of the two-dimensional 
space groups]. Following the notation of Senechal 
(1979) let T denote the group of translations (here 
T = (x, y)). S denotes the point group; in this case S 
may be identified with the dihedral group (a, b). For 
any subgroup H of finite index, let T' d.enote its 
translational subgroup. Then H/T'= S', a subgroup 
of S. To find all subgroups H one must first choose 
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Fig. 5. Colorings 19-22 for color-group type CG12 and colorings 
23-36 for color-group type CG13. 

Fig. 6. Colorings 27-30 for color-group type CG14 and colorings 
31-32 for color-group type CG15. 

/z = [S: S'] and / i  = [ T: T']. In the table of colorings 
(Table 1) we list the subgroups by generators putting 
the generators of T' last and it will be clear what S' 
and T' are in each case. For example, subgroup 
H~2 = (112, bx, xy, y2); here T' = (xy, y2) is of index/i  = 
2 in T while S' = (a 2, b) is of index/z = 2 in S. The 
20 color-group types are denoted C G 1 , . . . ,  CG20. 

a subgroup T' and a subgroup S' under which T' is 
invariant; to check this one may pick coset representa- 
tives for G~ T corresponding to the elements of S (in 
this example they can be the elements of (a, b) them- 
selves), then find the ones that correspond to the 
generators of the subgroups S' (call these {c, d}, say, 
if there are two of them), and operate with them on 
T' by conjugation. With T' and S', representatives 
for the cosets of H modulo T' must be selected 
appropriately (choose coset representatives for T 
modulo T', combine them with c and d and check 
that modulo T' they do generate a factor group corre- 
sponding to S'); see theorem 1.2 of Senechal (1979). 
Then the number of colors is n = [ G : H]  =/zA, where 

Discussion of the colorings 

For the case of two colors there are seven subgroups 
of index 2 in G = p4m [see also Nabonnand & Billiet 
(1983)], so there are seven colorings as shown in Fig. 
2. These correspond to five color-group types.//4 and 
/-/5 yield equivalent color groups; i.e. they both corre- 
spond to the color-group type CG4. It is also seen 
from the figure that the color patterns are k congruent 
but the colorings are inequivalent since the relation- 
ship of the colors to the original figure is clearly 
different. Similarly, the pair of colorings 6 and 7 
correspond to color-group CG5 and the colorings are 
also k congruent. Subgroups /-/1, /-/2, and /-/3 each 
correspond to a different color-group type. It is also 
seen that in these three cases an application of the 
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Fig. 7. Colorings 33-38. 

reflection k maps the portion representing the sub- 
group H onto itself. Since the seven subgroups of 
index 2 are of course all normal, the phenomenon of 
conjugate subgroups is not illustrated here. 

There are 31 subgroups of index 4. The subgroups 
Ha through HI4  a r e  all normal subgroups of index 4 
(see Fig. 3). Again it is seen that //8, /-/9, and H~o 
each afford different color-group types while the pairs 
H~], H~2 and H13, H~4 each correspond to color-group 
types CG9 and CG10 respectively. As is evident from 
the figure, the reflection k leaves each of the sub- 
groups/-/8,/-/9,/-/10 invariant while interchanging the 
pair Hi1 and H12 and interchanging/-/13 and H~4. 

In the case of the 14 normal subgroups just dis- 
cussed the fact that those colorings corresponding to 
the same color-group type also yield 'equivalent color 
patterns', as discussed earlier, would appear to give 
some justification to the use of color groups under the 
usual equivalence as opposed to colorings. However, 
the situation is more complicated as will be seen in 
further examples. Compare the four colorings 15, 16, 
17, 18 corresponding to color-group type C G l l  (see 
Fig. 4). H~5 and H~6 are conjugate subgroups as are 
H.I 7 and Has. It is clear that the colorings 15 and 16 
are quite different from each other as are 17 and 18. 

59 
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 vmw E 

 ,d  ,,mEmB 
" p'mmml 

I  tklJm| 

42 

4 / \ 4 4 /  

a \  4 \  

43 44 

Fig. 8. Colorings 39-44 for color-group type CG19. 

However, colorings 15 and 17 are similar (though, 
we emphasize again, not equivalent) since the reflec- 
tion k transforms one to the other (up to a relabelling 
of the colors; note that in the illustrated figures the 
'colors' used may or may not happen to match up 
under this transformation) and 16 and 18 are also k 
congruent. The four subgroups form two conjugate 
pairs; any two of these four subgroups would be 
'conjugate' if we allow elements from the larger group 
(a, 5, x, y, k). For example, x-lHlsx = H16 , x - 1 n l 7  x -- 

HIS, k-~ H15k = H17, k-l H~6k = H18 and hence 
(xk)-]Ha5(xk) =/-/18. The situation with each of the 
color-group types CG12, CG13, CG14 is similar to 
that of CGl l :  each is afforded by four subgroups 
consisting of two conjugate pairs and related by the 
reflection k as above. See colorings 19-30 (Figs. 5 
and 6). 
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Fig. 9. Colorings 45-50 for color-group type CG20. 

Subgroups H3~ and/-/32 are conjugate and each is 
invariant under k; they correspond to the one-color- 
group type CG15 (see Fig. 6). A similar situation 
holds for the pair H33 and Ha4 and the pair H35 and 
/436. The pair/-/37 and/-/38 is a bit more unusual; they 
are conjugate subgroups and they may also be trans- 
formed one to the other under conjugation by the 
reflection k, i.e. their colorings are k congruent (see 
Fig. 7). 

A further anomaly is apparent if one compares 
colorings 9 and 35; the patterns are similar and they 
are 'congruent: under the reflection h (see Fig. 1), 
which does not normalize G. It is clear that the 
associated color-group types CG7 and CG17, respec- 

tively, are different. In fact, H9 is normal in G while 
Has is not normal in G. This example was discussed 
in detail as example 3 of § 4 in Roth (1982). 

There are twelve subgroups of index 6 in p 4 m .  They 
correspond to the two color-group types CG19 and 
CG20. The six subgroups H39-H44 (color-group type 
CG19, see Fig. 8) are all conjugate. In addition, 
colorings 39 and 40 are k congruent (this is similar 
to the situation for the pair 37 and 38 described above) 
as are the pair 41, 42 and the pair 43, 44. 

The six conjugate subgroups H45-Hso correspond- 
ing to color-group type CG20 (see Fig. 9) show a 
different story. Colorings 45 and 46 are each invariant 
under k while 47 and 48 are interchanged by k. 
Colorings 49 and 50 are each invariant under k. 
However, in this last ease the color patterns are con- 
gruent under the reflection h. This is similar to the 
situation of subgroups H9 and H35 (discussed earli- 
er) except that here the two subgroups also happen 
to be conjugate and hence to correspond to the same 
color-group type, whereas the other example involved 
distinct color-group types. Thus here, in the ease of 
colorings 49 and 50, the fact that the color patterns 
are equivalent and that the color-group type is the 
same is merely a coincidence, because they are con- 
gruent under the symmetry operation h, which does 
not normalize the group G. 
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